4.2 Energy and Power

Definition 4.12. For a signal $g(t)$, the instantaneous power $p(t)$ dissipated in the $1-\Omega$ resister is $p_{g}(t)=|g(t)|^{2}$ regardless of whether $g(t)$ represents a voltage or a current. To emphasize the fact that this power is based upon unity resistance, it is often referred to as the normalized (instantaneous) power.

Definition 4.13. The total (normalized) energy of a signal $g(t)$ is given by

$$
E_{g}=\int_{-\infty}^{+\infty} p_{g}(t) d t=\int_{-\infty}^{+\infty}|g(t)|^{2} d t=\lim _{T \rightarrow \infty} \int_{-T}^{T}|g(t)|^{2} d t
$$

4.14. By the Parseval's theorem discussed in 2.43, we have

$$
E_{g}=\int_{-\infty}^{\infty}|g(t)|^{2} d t=\int_{-\infty}^{\infty}|G(f)|^{2} d f
$$

Definition 4.15. The average (normalized) power of a signal $g(t)$ is given by

$$
P_{g}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|g(t)|^{2} d t=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|g(t)|^{2} d t
$$

Definition 4.16. To simplify the notation, there are two operators that used angle brackets to define two frequently-used integrals:
(a) The "time-average" operator:

$$
\begin{equation*}
\langle g\rangle \equiv\langle g(t)\rangle \equiv \lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} \mathrm{~g}(t) d t=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \mathrm{~g}(t) d t \tag{42}
\end{equation*}
$$

(b) The inner-product operator:

$$
\begin{equation*}
\left\langle g_{1}, g_{2}\right\rangle \equiv\left\langle g_{1}(t), g_{2}(t)\right\rangle=\int_{-\infty}^{\infty} g_{1}(t) g_{2}^{*}(t) d t \tag{43}
\end{equation*}
$$

4.17. Using the above definition, we may write

- $E_{g}=\langle g, g\rangle=\langle G, G\rangle$ where $G=\mathcal{F}\{g\}$
- $\left.P_{g}=\left.\langle | g\right|^{2}\right\rangle$
- Parseval's theorem: $\left\langle g_{1}, g_{2}\right\rangle=\left\langle G_{1}, G_{2}\right\rangle$
where $G_{1}=\mathcal{F}\left\{g_{1}\right\}$ and $G_{2}=\mathcal{F}\left\{g_{2}\right\}$
4.18. Time-Averaging over Periodic Signal: For periodic signal $g(t)$ with period T_{0}, the time-average operation in (42) can be simplified to

$$
\langle g\rangle=\frac{1}{T_{0}} \int_{T_{0}} g(t) d t
$$

where the integration is performed over a period of g.
Example 4.19. $\left\langle\cos \left(2 \pi f_{0} t+\theta\right)\right\rangle=$

Similarly, $\left\langle\sin \left(2 \pi f_{0} t+\theta\right)\right\rangle=$
Example 4.20. $\left\langle\cos ^{2}\left(2 \pi f_{0} t+\theta\right)\right\rangle=$

Example 4.21. $\left\langle e^{j\left(2 \pi f_{0} t+\theta\right)}\right\rangle=\left\langle\cos \left(2 \pi f_{0} t+\theta\right)+j \sin \left(2 \pi f_{0} t+\theta\right)\right\rangle$

Example 4.22. Suppose $g(t)=c e^{j 2 \pi f_{0} t}$ for some (possibly complex-valued) constant c and (real-valued) frequency f_{0}. Find P_{g}.
4.23. When the signal $g(t)$ can be expressed in the form $g(t)=\sum_{k} c_{k} e^{j 2 \pi f_{k} t}$ and the f_{k} are distinct, then its (average) power can be calculated from

$$
P_{g}=\sum_{k}\left|c_{k}\right|^{2}
$$

Example 4.24. Suppose $g(t)=2 e^{j 6 \pi t}+3 e^{j 8 \pi t}$. Find P_{g}.

Example 4.25. Suppose $g(t)=2 e^{j 6 \pi t}+3 e^{j 6 \pi t}$. Find P_{g}.

Example 4.26. Suppose $g(t)=\cos \left(2 \pi f_{0} t+\theta\right)$. Find P_{g}.
Here, there are several ways to calculate P_{g}. We can simply use Example 4.20. Alternatively, we can first decompose the cosine into complex exponential functions using the Euler's formula:
4.27. The (average) power of a sinusoidal signal $g(t)=A \cos \left(2 \pi f_{0} t+\theta\right)$ is

$$
P_{g}= \begin{cases}\frac{1}{2}|A|^{2}, & f_{0} \neq 0 \\ |A|^{2} \cos ^{2} \theta, & f_{0}=0\end{cases}
$$

This property means any sinusoid with nonzero frequency can be written in the form

$$
g(t)=\sqrt{2 P_{g}} \cos \left(2 \pi f_{0} t+\theta\right) .
$$

4.28. Extension of 4.27: Consider sinusoids $A_{k} \cos \left(2 \pi f_{k} t+\theta_{k}\right)$ whose frequencies are positive and distinct. The (average) power of their sum

$$
g(t)=\sum_{k} A_{k} \cos \left(2 \pi f_{k} t+\theta_{k}\right)
$$

is

$$
P_{g}=\frac{1}{2} \sum_{k}\left|A_{k}\right|^{2} .
$$

Example 4.29. Suppose $g(t)=2 \cos (2 \pi \sqrt{3} t)+4 \cos (2 \pi \sqrt{5} t)$. Find P_{g}.

Example 4.30. Suppose $g(t)=3 \cos (2 t)+4 \cos \left(2 t-30^{\circ}\right)+5 \sin (3 t)$. Find P_{g}.
4.31. For periodic signal $g(t)$ with period T_{0}, there is also no need to carry out the limiting operation to find its (average) power P_{g}. We only need to find an average carried out over a single period:

$$
P_{g}=\frac{1}{T_{0}} \int_{T_{0}}|g(t)|^{2} d t
$$

Example 4.32.

4.33. When the Fourier series expansion (to be reviewed in Section 4.3) of the signal is available, it is easy to calculate its power:
(a) When the corresponding Fourier series expansion $g(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j 2 \pi k f_{0} t}$ is known,

$$
P_{g}=\sum_{k=-\infty}^{\infty}\left|c_{k}\right|^{2}
$$

(b) When the signal $g(t)$ is real-valued and its (compact) trigonometric Fourier series expansion $g(t)=c_{0}+2 \sum_{k=1}^{\infty}\left|c_{k}\right| \cos \left(2 \pi k f_{0} t+\angle \phi_{k}\right)$ is known,

$$
P_{g}=c_{0}^{2}+2 \sum_{k=1}^{\infty}\left|c_{k}\right|^{2}
$$

Definition 4.34. Based on Definitions 4.13 and 4.15, we can define three distinct classes of signals:
(a) If E_{g} is finite and nonzero, g is referred to as an energy signal.
(b) If P_{g} is finite and nonzero, g is referred to as a power signal.
(c) Some signals ${ }^{17}$ are neither energy nor power signals.

- Note that the power signal has infinite energy and an energy signal has zero average power; thus the two categories are disjoint.

Example 4.35. Rectangular pulse
${ }^{17}$ Consider $g(t)=t^{-1 / 4} 1_{\left[t_{0}, \infty\right)}(t)$, with $t_{0}>0$.

Example 4.36. Sinc pulse

Example 4.37 (M2018). Consider a signal $g(t)$ below. Note that $g(t)=0$ outside of the interval [0, 2].

Let

$$
y(t)=\sum_{k=-\infty}^{\infty} g(t-k) \quad \text { and } \quad z(t)=\sum_{k=-\infty}^{\infty} g(t-2 k) .
$$

Calculate the following quantities:
(a) energy E_{g}
(b) average power P_{g}
(c) $\langle g(t)\rangle$
(d) average power P_{y}
(e) average power P_{z}

The table below summarizes, for each signal, its (i) time average (ii) (total) energy, (iii) (average) power, and indication (by putting a Y (for a yes) or an N (for a no)) in part (iv) whether it is an energy signal and in part (v) whether it is a power signal.

		$g(t)$	$y(t)$	$z(t)$
(i)	$\langle\cdot\rangle$			
(ii)	(Total) Energy			
(iii)	(Average) Power			
(iv)	Energy Signal?			
(v)	Power Signal?			

Example 4.38. For $\alpha>0, g(t)=A e^{-\alpha t} 1_{[0, \infty)}(t)$ is an energy signal with $E_{g}=|A|^{2} / 2 \alpha$.

Example 4.39. The rotating phasor signal $g(t)=c e^{j\left(2 \pi f_{0} t+\theta\right)}$ is a power signal with $P_{g}=|c|^{2}$.
Example 4.40. The sinusoidal signal $g(t)=A \cos \left(2 \pi f_{0} t+\theta\right)$ is a power signal with $P_{g}=|A|^{2} / 2$.
4.41. Consider the transmitted signal

$$
x(t)=m(t) \cos \left(2 \pi f_{c} t+\theta\right)
$$

in DSB-SC modulation. Suppose $M\left(f-f_{c}\right)$ and $M\left(f+f_{c}\right)$ do not overlap (in the frequency domain).
(a) If $m(t)$ is a power signal with power P_{m}, then the average transmitted power is

$$
P_{x}=\frac{1}{2} P_{m} .
$$

- Q: Why is the power (or energy) reduced?
- Remark: When $x(t)=\sqrt{2} m(t) \cos \left(2 \pi f_{c} t+\theta\right)$ (with no overlapping between $M\left(f-f_{c}\right)$ and $M\left(f+f_{c}\right)$), we have $P_{x}=P_{m}$.
(b) If $m(t)$ is an energy signal with energy E_{m}, then the transmitted energy is

$$
E_{x}=\frac{1}{2} E_{m} .
$$

Example 4.42. Suppose $m(t)=\cos \left(2 \pi f_{c} t\right)$. Find the average power in $x(t)=m(t) \cos \left(2 \pi f_{c} t\right)$.

